
J Stat Phys (2012) 149:951–963
DOI 10.1007/s10955-012-0629-0

One-Way Markov Process Approach to Repeat Times
of Large Earthquakes in Faults

Alejandro Tejedor · Javier B. Gomez ·
Amalio F. Pacheco

Received: 1 February 2012 / Accepted: 24 October 2012 / Published online: 8 November 2012
© Springer Science+Business Media New York 2012

Abstract One of the uses of Markov Chains is the simulation of the seismic cycle in a
fault, i.e. as a renewal model for the repetition of its characteristic earthquakes. This rep-
resentation is consistent with Reid’s elastic rebound theory. We propose a general one-way
Markovian model in which the waiting time distribution, its first moments, coefficient of
variation, and functions of error and alarm (related to the predictability of the model) can be
obtained analytically. The fact that in any one-way Markov cycle the coefficient of variation
of the corresponding distribution of cycle lengths is always lower than one concurs with
observations of large earthquakes in seismic faults. The waiting time distribution of one of
the limits of this model is the negative binomial distribution; as an application, we use it to
fit the Parkfield earthquake series in the San Andreas fault, California.

Keywords Markov process · Earthquakes · Renewal model

1 Introduction

The elastic-rebound model is the canonical “macroscopic” theory of great earthquakes [24,
26]. It states that a great earthquake will occur where large elastic strains have accumulated
in the crust. The earthquake itself will relieve most of the strain which will then accumulate
slowly again by a steady input of tectonic stress until the elastic strain becomes sufficiently
large for another earthquake to ensue. The duration of this “earthquake cycle” is the ratio
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of the strain released during an earthquake to the rate of input of tectonic strain by plate
motion. The concept of cycle in this context is a fundamentally geologic one that bears little
resemblance to other cycles encountered in physics, and is related to the changing strain
state of a fault plane as stress steadily accumulates via tectonic plate motion [15, 19]. In the
concept of earthquake cycle it is implicit that the stress and strain state of the fault plane after
the kth large earthquake is statistically indistinguishable from the state after the (k − 1)th or
any previous large earthquake in the same fault.

An outcome of the elastic-rebound model is the idea of characteristic earthquakes [1, 27,
35, 36]. Although a specific seismic fault or fault segment can produce small earthquakes
as well as large ones, an overwhelming part of the stored elastic energy is released by the
large ones, which rupture the entire area of the fault (or fault segment) in a repetitive, cyclic
manner. As the magnitude of an earthquake is related to the broken area of the fault [14],
each fault (or fault segment) tends to produce large earthquakes of the same magnitude; and
because these earthquakes release most of the stored elastic energy, their repetition defines
the duration of the earthquake cycle. The concept of characteristic earthquake has slowly
changed since its definition by [27], but the idea of a series of large repetitive earthquake
rupturing periodically an entire fault remain, although not all seismologists adhere to it (e.g.,
[17]) due to its phenomenological definition.

Because the Earth’s crust is heterogeneous and faults are not isolated from each other but
communicate through long-range stress-transfer mechanisms [3, 4, 9, 28, 31], the earthquake
cycle is not periodic. So, although the elastic-rebound model is in essence deterministic, its
application to a heterogeneous and interacting crust implies its translation into a probabilistic
framework. Only in this way can it be used for earthquake forecasting purposes.

Several authors have proposed probabilistic versions of the elastic-rebound model, in the
shape of probability distribution functions (pdfs) for the duration of the earthquake cycle [12,
18, 20, 25, 32, 33]. The rationale of these pdfs ranges from purely statistical (e.g. Utsu [32])
to physically-motivated (e.g. Vázquez-Prada et al. [33]). However, due to the scarcity of
registered large earthquakes in a specific fault (usually 4 to 10 earthquakes), the statistics
upon which the selection of a specific pdf is based are poor. This means that different pdfs
can fit the empirical distribution function.

The variability of the duration of the earthquake cycle can be appropriately defined in
the context of a pdf by means of the coefficient of variation, α, the ratio of the standard
deviation σ to the mean μ of the pdf.

α = σ

μ
(1)

In the seismological literature the coefficient of variation is also known as the aperiod-
icity, a very descriptive name when applied to the duration of the earthquake cycle: when
α = 0 the earthquake cycle is perfectly periodic, when 0 < α < 1 the earthquake cycle is
quasiperiodic, and when α > 1 the earthquake cycle is said to have a clustering of events.
The case α = 1 is particularly important because the exponential distribution has this prop-
erty, and the exponential distribution is the pdf of an earthquake cycle where large earth-
quakes occur in time following a Poisson distribution (i.e., they are random in time).

The predictability of a time series whose events follow a specific pdf is related to its
aperiodicity [22, 30, 37]. Applied to the earthquake cycle this means that the predictability
of the next large (characteristic) earthquake in a series is related to the aperiodicity of the pdf
describing the duration of the cycles: aperiodicities close to zero imply greater predictability
than aperiodicities close to one. Sykes and Menke [29] have calculated the aperiodicity of the
earthquake cycle of several seismic faults. All the studied faults have aperiodicities smaller
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Fig. 1 Scheme of a one-way
Markov cycle with N = 6. The
probability of staying in state i is
ai and the probability of jumping
from state i to state i + 1 is
(1 − ai ). The wavy line between
states 6 and 1 means that at the
end of the cycle all the stored
energy is released

than 0.6, meaning that the earthquake cycle is quasiperiodic. Ellsworth et al. [8] also studied
the aperiodicity of the earthquake cycle in several fault segments and concluded that all of
them are between 0.11 and 0.97. Recently, Abaimov et al. [1, 2] studied the creeping section
of the San Andreas Fault, where instead of through medium or large earthquakes, elastic
strain is released in an almost continuous way via small slip events 20 to 100 days apart.
The aperiodicity of these slip series is in the range 0.473 < α < 0.677 [1]. It seems, thus,
that α < 1 is a property of the earthquake cycle in seismic faults and that this behavior spans
cycles with durations from days to hundreds of years. Can this be reproduced by simple
models of single-fault seismicity?

In this paper we propose a general one-way Markovian model of the earthquake cycle
with aperiodicities lower than 1. The term one-way in this family of models refers to the
fact that after a time step, the state of strain in a fault can remain either stationary or grow
by a finite amount. In other words, in this model a decrease in the strain, such as could take
place in a random walk type model, is forbidden. Time increases in discrete steps and strain
is also added in finite units. The N positions of the model correspond to states of the system
with progressive growing strain. The scheme of this model is shown in Fig. 1, for N = 6.

The relaxation of the system through a sudden and complete loss of strain, which simu-
lates the occurrence of an earthquake, occurs when the N th position of chain is reached. In
Fig. 1, the relaxation is represented by the wavy line.

This article is organized as follows: Sect. 2 contains the general form of the stochastic
matrix of one-way Markov cycles together with the specialization to the case of the Box-
Model and the case where all the parameters are equal. This second case is nothing but a
Negative Binomial Process. Sections 3 and 4 contain the distribution function for the cycle
length and the two first moments of that distribution, respectively. The distribution function
and first moments of the two particular cases mentioned above are also included. In Sect. 5,
the so called fraction of error and fraction of alarm time are calculated. In Sect. 6, using a
Negative Binomial Distribution we fit the data of the Parkfield earthquake series. Finally, in
Sect. 7 we write the conclusions. Additionally, we have considered it of interest to explicitly
present, for a non trivial case such as N = 3, how the distribution function in the case
where all the parameters are equal tends to the Negative Binomial Distribution. This proof
is written in the Appendix.
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2 One-Way Markov Cycles: Two Particular Cases

This model can be viewed as an array of N sites, or cells. These N sites are ordered by the
index i, i = 1,2, . . . ,N . As in genuine cellular automata, time increases in discrete steps. At
the beginning of each cycle (i = 1), the array is empty of particles. In the first time step one
particle is thrown to hit site 1, the probability of success being (1−a1) and, in consequence,
the probability of failure is a1. In each failed attempt, the particle than misses the site is lost.
Typically, after several failures a particles hits site 1 and is incorporated to the array at this
position. Once the first site is occupied, the successive throws of particles are aimed to hit
site 2. All is identical to the first case except that now the probability of success is (1 − a2)

and that of failure is a2.
The occupation of site 1 is the first transit of the one-way Markov cycle ant the occupation

of site 2 is the second transit. And then is the turn of sites 3,4, . . . ,N . When site N is
occupied, the cycle ends because all the particles accumulated in the array are released in a
global relaxation. These simple rules are graphically illustrated in Fig. 1 and materialized in
the Markov matrix [M], that for a cycle of size N has the form

[M] =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a1 1 − a1 0 · · · 0 0 0
0 a2 1 − a2 · · · 0 0 0
0 0 a3 · · · 0 0 0
...

...
...

. . .
...

...
...

0 0 0 · · · aN−2 1 − aN−2 0
0 0 0 · · · 0 aN−1 1 − aN−1

1 − aN 0 0 · · · 0 0 aN

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where the N parameters ai , i = 1,2,3, . . . ,N , are 0 < ai < 1. Note that, including the
size N , the number of free parameters in the model is N + 1. From the point of view of
the earthquake cycle defined in Sect. 1, if we conceptualize a fault plane as a 2D array of
cells and each cell can be either stressed or un-stressed, the probability ai of remaining in
the same position of the cycle means no increase in stress during time step i, while jumping
to the next position in the cycle, which occurs with probability (1 − ai), is associated with
an increase in stress on the fault plane (i.e., a change of one cell from the un-stressed to the
stressed state), thus approaching the final state when all the fault plane is stressed and the
large earthquake that terminates the cycle takes place.

Denoting by [M]T the transpose of the Markov matrix, the components of its eigenvector
with eigenvalue unity, ci , are:

ci = 1

C

N∏
j (�=i)=1

(1 − aj )

C =
N∑

i=1

N∏
j (�=i)=1

(1 − aj )

(3)

where C is the normalization factor. The component ci is the probability, statistically speak-
ing, of finding the system in the position i of the cycle.

A particular case of this general scheme is that of the Box Model (BM) [11]. This is a
cellular automaton where the stochastic filling of a box represents the increase of elastic
energy in a fault during the seismic cycle. To visualize the model, consider an array of N

cells. The position of the cells is irrelevant, but we can assume that they are arranged in
the shape of a box. At the beginning of each cycle, the box is completely empty. At each
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time step, one ball is thrown, at random, to one of the cells in the box. That is, each cell
has equal probability, 1/N , of receiving the ball. If the cell that is chosen is empty, it will
become occupied. If it was already occupied, the thrown ball is lost. Thus, each cell can be
either occupied by a ball (stressed) or empty (un-stressed). When a new throw completes
the occupation of the N cells of the box, it topples, becoming completely empty, and a
new cycle starts. The emptying of the box after it is full is analogous to the generation of a
characteristic earthquake. In this model, the values of the N parameters are:

ai = i − 1

N
(4)

Another significant particular case corresponds to the case when

ai = a ∀i (5)

That is, all the parameters are identical. In such a Markov process, the distribution of the
cycle length is that of a Negative Binomial Distribution (NBD) [7] where the probability
of success is (1 − a) and N successes are required. In other words, the negative binomial
distribution is a discrete probability distribution of the number of Bernoulli trials before a
specified (non-random) number of successes (denoted N ) occur. For example, if one throws
a die repeatedly until the third time ‘1’ appears (N = 3), then the probability distribution of
the number of trials (i.e. the sum of ‘1’s and non-‘1’s) that have been needed will be negative
binomial.

3 Distribution Function for the Cycle Lengths

The distribution function of the cycle length for a one-way Markov cycle of N states, PN(n),
can be obtained from the Markov matrix of the system, M, by the application of the follow-
ing three steps: (i) The element of the last row and first column of M is changed by a 0.
After this pruning, the matrix will be called M′. (ii) The new matrix M′ is multiplied by it-
self n − 1 times to obtain M′(n−1) and the element of the first row, last column of this matrix
is identified. (iii) PN(n) is the product of this selected matrix element times 1/N . The whys
of this recipe are explained, for example, in [34]. Using this procedure, one obtains

PN(n) =
[

N∏
i=1

(1 − ai)

][
N∑

i=1

an−1
i∏N

j(�=i)=1(ai − aj )

]

n = N,N + 1, . . . ,∞
(6)

where n represents the length of the cycle expressed in time steps of the model.
This is the general form of the discrete distribution function in any one-way Markov

cycle. This formula has been obtained from systematics. That is, after having explicitly
calculated P2(n), P3(n), etc., one deduces that the form of PN(n) is what is written in
Eq. (6).

When these models are applied in seismicity, the fact that until time step n = N the
probability of completing a cycle is null is called a stress shadow, i.e., a time period during
which no earthquake can occur in the fault due to the fact that the previous one has release
all of the stored energy.

In the two particular cases mentioned above, the Box Model and the Negative Binomial
Distribution, one obtains:

PN(n) =
N−1∑
i=1

(−1)i+1

(
N − 1
i − 1

)(
1 − i

N

)n−1

n = N,N + 1, . . . ,∞
(7)
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for the BM, and

PN(n) = (1 − a)Nan−N

(
n − 1
N − 1

)

n = N,N + 1, . . . ,∞
(8)

for the NBD.

4 The Two First Moments

In a geometric process where the probability of success is (1 − a), the mean and variance of
the distribution are:

μ = 1

1 − a
, (9)

and

σ 2 = a

(1 − a)2
. (10)

Thus, the coefficient of variation, or aperiodicity, of a geometric process is

α = σ

μ
= a1/2 < 1 (11)

Therefore, as a one-way Markov cycle is nothing more than a succession of N indepen-
dent geometric processes, the mean and variance can be written as:

μ = 1

1 − a1
+ 1

1 − a2
+ · · · + 1

1 − aN

, (12)

and

σ 2 = a1

(1 − a1)2
+ a2

(1 − a2)2
+ · · · + aN

(1 − aN)2
. (13)

Thus, the aperiodicity, α, is given by:

α =
[ a1

(1−a1)2 + a2
(1−a2)2 + · · · + aN

(1−aN )2 ]1/2

1
1−a1

+ 1
1−a2

+ · · · + 1
1−aN

. (14)

This aperiodicity is rigorously lower than 1 because the different subprocesses which build
the one-way Markov cycle are geometric and independent.

In the particular case of the NBD, we have:

μ = N

1 − a
, (15)

σ 2 = Na

(1 − a)2
, (16)

and

α = σ

μ
=

√
a

N
. (17)
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5 Fraction of Error and Fraction of Alarm

A convenient way to assess the predictability of a time series is by trying to forecast its events
by declaring alarms at particular times. The aim is to declare alarms before all the events
in order not to miss any, but to declare them just before the events in order to minimize the
total alarm time. Many strategies can be devised to declare the alarms but there is a reference
strategy to which all others can be compared [16, 23, 34]. This strategy consists of setting
the alarm a fixed time interval after each event (waiting time) and maintaining it until the
occurrence of the event. If the following event in the time series occurs before the alarm
is raised, it is counted as a prediction error; if the following event in the time series occurs
after the alarm is raised, it is counted as a prediction success and the alarm is then canceled.

The fraction of errors fe (number of missed events divided by the total number of events)
and the fraction of alarm time fa (total alarm time divided by the total duration of the time
series) can be computed as a function of the waiting time n and the purpose is to find the
optimum waiting time. This optimum waiting time depends on the relative importance that
failing to predict an event has compared to keeping the alarm on. An objective function,
called loss function, L, can be defined that incorporates this trade-off in each particular
case. One very simple option is L = fe + fa , where both, failure to predict an earthquake
and a long alarm time, are equally penalized. Obviously the aim is to find the waiting time
n = n∗ that minimizes L(n). Depending on the context where an alarm-based prediction
strategy is applied, the loss function can be tailored to specific needs [21, 22].

For any thinkable strategy based on the use of alarms, if an earthquake takes place when
the alarm is on, the prediction is considered to be a success. If the earthquake takes place
when the alarm is off, then it is labeled as a prediction failure. In our general one-way
Markov model, and using the above-mentioned strategy, the fraction of error function adopts
the form

fe(n) =
n∑

n′=N

P
(
n′) = 1 −

∞∑
n′=n+1

P
(
n′). (18)

Note that fe is the accumulated distribution of Eq. (6). Performing the sum over the n′ index,
the result is:

fe(n) = 1 −
[

N∏
i=1

(1 − ai)

]
N∑

i=1

[
an

i

(1 − ai)

1∏N

j(�=i)=1(ai − aj )

]
. (19)

Regarding the fraction of alarm time function, fa , its general form is

fa(n) =
∑∞

n′=n P (n′)(n′ − n)∑∞
n′=n P (n′)n′ =

∑∞
n′=n P (n′)(n′ − n)

μ
, (20)

and, for the particular case of a one-way Markov cycle, we have:

μfa(n) =
∞∑

n′=n

n′P
(
n′) − n

∞∑
n′=n

P
(
n′)

=
[

N∏
i=1

(1 − ai)

]
N∑

i=1

[
ai

n∏N

j(�=i)=1(ai − aj )
�

(
n

ai(1 − ai)
+ 1

(1 − ai)2

)]

− n
(
1 + P (n) − fe(n)

)
. (21)
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6 Application of the Model to the Parkfield Series

As said in Sect. 2, two particular cases of the models included in the family of one-way
Markov cycles are the BM and the NBD. The waiting time distribution of the BM was used
in [11] to fit the series of earthquakes occurred at the Parkfield segment of the San Andreas
fault in California. Here we will apply a NBD to the same series because it constitutes the
best studied sequence of characteristic earthquakes in the world. The mean and aperiodic-
ity of the Parkfield earthquake series are 24.5 years and 0.378 respectively. During the mid
1980s a prediction experiment was set up in this fault segment in order to predict the time
of the next earthquake in the series [6]. Finally the earthquake did occur in 2004, but out-
side the prediction window of the 1985 experiment, demonstrating that a reliable short-term
earthquake prediction is still not achievable [5].

A negative binomial process is a particular case where all the probabilities of advancing
in the one-way Markov process are equal. Thus, in principle, in this model one would have
to deal with two parameters, N and a. But this can be simplified if N and a are related. One
interesting possibility is

1 − a = 1

N
, (22)

which corresponds to a statistical process of filling the N sites of an array in an ordered way
(note the difference with the Box Model, where the filling process is not ordered). Thus, in
this particular case the occupation of any site is a geometric process with a probability of
success equal to 1/N while (N − 1)/N is the probability of failure. Inserting Eq. (22) into
Eq. (17), we obtain the aperiodicity of this concrete model:

α =
√

N − 1

N
. (23)

The aperiodicity has a maximum value of 0.5 for N = 2 and then decays monotonously
to 0 as N tends to ∞.

We will fit the Parkfield series of earthquakes to this model using the method of moments.
First, we will choose the value of N for which the aperiodicity is nearest to that of the
Parkfield series, α = 0.378. The result is N = 6, for which α = 0.373. From Eq. (15), the
mean value of n in this model is N2 and thus for N = 6 the mean is equal to 36 time
steps. Because the actual mean of the Parkfield series is 24.62 years, one step of the model
corresponds to 24.62/36 = 0.68 years, or around 8 months.

As the last earthquake of the series occurred on September 28, 2004 and the period of
stress shadow is 6 × 8 = 48 months, it ended in September 2008. Therefore the occurrence
of the next event now (2012) is not forbidden by this model, although the probability is very
low.

Now the parameters are already fixed and using Eq. (8), the pdf for the fit is

P6(n) =
(

1

6

)6(5

6

)n−6 (
n − 1

5

)
, n = 6,7, . . . ,∞. (24)

In Fig. 2 we have superimposed the cumulative histogram (empirical distribution func-
tion) of the Parkfield series to the cumulative distributions of the NBD and other five models
used in the literature [10, 12]. It is quite obvious from the figure that the performance of all
six models is good and very similar, including the NBD. Indeed, the residuals for the NBD
evaluated at the midpoints of the horizontal segments of the empirical distribution function
are the lowest of the six tested models.
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Fig. 2 Fit of the Negative
Binomial model to the Parkfield
series and comparison with other
statistical models used in the
literature (Color figure online)

The hazard rate corresponding to PN(n) is defined as:

hN(n) = PN(n)∑∞
i=n PN(i)

. (25)

The hazard rate is the probability for an earthquake to occur at time step n on the condition
that it has not occurred until time step n − 1. However, in the seismological literature is
customary to express the likelihood of an earthquake using the yearly conditional probability
of earthquake occurrence, P (n|τ = 1 year), instead of the hazard rate. This function gives
the probability of having an earthquake during the next year provided it has not occurred
before:

PN(n|τ = 1 year) = SN(n + τ) − SN(n)

1 − SN(n − 1)
, (26)

where SN(n) = ∑n

i=N PN(n) is the cumulative distribution function.
Both the hazard rate and the yearly conditional probability functions for the NBD reach

a constant value for large times. Inserting Eq. (24) into Eq. (25) one easily obtains that, for
long times,

lim
n→∞hN(n) = 1

N
. (27)

As an example, the asymptotic (large time) hazard rate for the Parkfield series is h6(∞) =
1/6 = 0.1667, while the present hazard rate (for the end of the year 2012) is 0.0033, a 2 %
of the maximum hazard rate.

The yearly conditional probability function for the Parkfield series is illustrated in Fig. 3.
Again, as in Fig. 2, the NBD and five other models are compared. The present yearly prob-
ability of earthquake occurrence is 0.004, i.e., there is a 0.4 % probability of having an
earthquake in the following 12 months. Obviously this probability is low because the earth-
quake cycle is in its early stages. When the cycle is at its average duration, 24.62 years, the
yearly probability is 6 % (Fig. 3).

7 Conclusions

We have introduced a family of models, one-way Markov cycles, for the description of the
repetitive occurrence of earthquakes in faults. We have calculated the form of the distribution
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Fig. 3 Yearly conditional
probability for the Parkfield
series as predicted by the
Negative Binomial model
compared to other statistical
models used in the literature
(Color figure online)

function for the cycle length. The number of independent parameters, N , coincides with the
number of positions in the Markov cycle, each one corresponding to a transition probability
(1−ai) to the next state in the cycle (i = 1,2, . . . ,N ). The first moments of this distribution
are easily calculated bearing in mind that a one-way Markov cycle is nothing more than a
succession of N independent geometric processes. Thus, these moments are written as the
sum of the mean, or variance, of the N stages of the cycle. Most properties of this family
of models can be obtained analytically, an interesting result in itself. Two of such properties
are the fraction of error to predict and the fraction of alarm time, basic functions to assess
the predictability of earthquake renewal models [13].

The above enumerated properties of the model nicely match Reid’s theoretical vision of
the mechanism of how earthquakes are generated [15]. As commented on in the Introduc-
tion, data on the recurrence of large earthquakes in well documented seismic faults indicate
that their aperiodicity is always lower than unity [1, 2, 8, 29]. Because the aperiodicity (coef-
ficient of variation) of the distribution of cycle lengths in any one-way Markov cycle is also
lower than unity, this family of models can be used as general renewal models of earthquake
recurrence.

Two limit cases of one-way Markov cycles are the Box Model (BM) and the Negative Bi-
nomial Model (NBM). The first was already used by the authors to evaluate the predictability
of the Parkfield, California, series of earthquakes [11]. Here we have applied the NBM to the
same earthquake series and shown that it gives competitive results in comparison to several
other renewal models used in the literature. However, while renewal models using known
distributions such as gamma, Weibull, log-normal, etc. are pure fits to earthquake data, our
model at least provides a naïve view of the process of loading and relaxation of a fault.
This relationship between the model and the physics of a fault, together with the conclusion
that one-way Markov cycles always have aperiodicities lower than one (in agreement with
observations), are the main results of our study.
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would like to thank Jesús Asin, Jesús Bastero, Leandro Moral and Carmen Sanguesa who always help with a
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Appendix: The Negative Binomial Distribution as a Limit: Case N = 3

In this Appendix we show explicitly that, for N = 3, the limit of Eq. (6) when the three
parameters are equal is Eq. (8). For simplicity in the notation, let us call a1 = a, a2 = b,
a3 = c. Eq. (6) for N = 3 reads as follows:

P3(n)

K
= an−1

(a − b)(a − c)
+ bn−1

(b − a)(b − c)
+ cn−1

(c − a)(c − b)

K = (1 − a)(1 − b)(1 − c)

(28)

To carry out the limit, we introduce new variables x and y.

a = xc

b = yc
(29)

The limit we seek will be implemented by tending x and y to 1. Substituting the new
variables into Eq. (28), the result is:

cn−1xn−1

c2(x − y)(x − 1)
+ cn−1yn−1

c2(y − x)(y − 1)
+ cn−1

c2(1 − x)(1 − y)

= cn−3

[
xn−1(y − 1) − yn−1(x − 1) + (x − y)

(x − y)(x − 1)(y − 1)

]
(30)

Elaborating Eq. (30) slightly, we obtain:

cn−3

(x − y)(x − 1)(y − 1)

[
y
(
xn−1 − 1

) − x
(
xn−2 − 1

) − yn−1(x − 1)
]

(31)

Henceforth it is convenient to use the following type of polynomials:

Pn(x) = xn + xn−1 + xn−2 + · · · + x + 1

Pn(1) = n + 1 (32)

Pn(x, y) = xn + xn−1y + xn−2y2 + · · · + xyn−1 + yn

These polynomials fulfill the so-called cyclotomic property, namely
(
xn − 1

) = (x − 1)Pn−1(x)

(
xn − yn

) = (x − y)Pn−1(x, y)
(33)

So, dividing the second factor in Eq. (31) by (x − 1) we obtain

cn−3

(x − y)(y − 1)

[
yPn−2(x) − xPn−3(x) − yn−1

]

= cn−3

(x − y)(y − 1)

[
y
(
Pn−3(x) + xn−2

) − xPn−3(x) − yn−1
]

= cn−3

(x − y)(y − 1)

[
(y − x)Pn−3(x) + y

(
xn−2 − yn−2

)]
(34)

Now we divide the second factor of Eq. (34) by (x − y)
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cn−3

(y − 1)

[
yPn−3(x, y) − Pn−3(x)

]

= cn−3

(y − 1)

[
y
(
xn−3 + xn−4y + xn−5y2 + · · · + xyn−4 + yn−3

)

− (
xn−3 + xn−4 + · · · + x + 1

)]

= cn−3

(y − 1)

[
(y − 1)xn−3 + (

y2 − 1
)
xn−4 + · · · + (

yn−4 − 1
)
x2

+ (
yn−3 − 1

)
x + (

yn−2 − 1
)]

= cn−3
[
xn−3 + xn−4P1(y) + xn−5P2(y) + · · · + x2Pn−5(y)

+ xPn−4(y) + Pn−3(y)
]

(35)

Returning to Eq. (28), using Eq. (35), and performing the limit x, y → 1, we obtain:

lim
x,y→1

P3(n) = (1 − c)3cn−3
[
1 + 2 + 3 + · · · + (n − 3) + (n − 2)

]

= (1 − c)3cn−3 (n − 1)(n − 2)

2
(36)

This formula coincides with Eq. (8) when N = 3

P3(n) = (1 − c)3cn−3

(
n − 1

2

)

n = 3,4, . . . ,∞
(37)
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