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Abstract—The negative binomial distribution is presented as

the waiting time distribution of a cyclic Markov model. This cycle

simulates the seismic cycle in a fault. As an example, this model,

which can describe recurrences with aperiodicities between 0 and

0.5, is used to fit the Parkfield, California earthquake series in the

San Andreas Fault. The performance of the model in the fore-

casting is expressed in terms of error diagrams and compared with

other recurrence models from literature.
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1. Introduction

The elastic-rebound model is the canonical

‘‘macroscopic’’ theory of great earthquakes (REID

1910; SCHOLZ 2002). It states that a great earthquake

will occur where large elastic strains have accumu-

lated in the crust. The earthquake itself will relieve

most of the strain, which will then accumulate slowly

again by a steady input of tectonic stress until the

elastic strain becomes sufficiently large for another

earthquake to ensue. The duration of this earthquake

cycle (the time between two consecutive large

earthquakes) is the ratio of the strain released during

an earthquake to the rate of input of tectonic strain by

plate motion.

Because the Earth’s crust is heterogeneous and

faults are not isolated from each other, the earthquake

cycle of a specific fault is not periodic. So, although

the elastic-rebound model is in essence a determin-

istic theory, its application to a heterogeneous and

interacting crust implies its translation into a proba-

bilistic framework.

The variability of the duration of a cycle (either

real earthquakes on a fault or synthetic earthquakes in

a model) can be appropriately defined in the context

of a probability density function (pdf) by means of

the coefficient of variation, a, the ratio of the standard

deviation r to the mean l of the pdf:

a ¼ r
l
: ð1Þ

In the seismological literature the coefficient

of variation is also known as the aperiodicity, a

very descriptive name when applied to the dura-

tion of the earthquake cycle: a = 0 gives

perfectly periodic cycles, 0 \ a \ 1 quasiperiodic

cycles, and a [ 1 clustering of events. The case

a = 1 is particularly important because the

exponential distribution has this property, and the

exponential distribution is the pdf of an earth-

quake cycle where large earthquakes occur in

time following a Poisson distribution (i.e., they

are random in time). In actual seismic faults, the

aperiodicity of the earthquake series is always \1

(SYKES and MENKE 2006; ELLSWORTH et al. 1999;

ABAIMOV et al. 2007).

RIKITAKE (1974) was the first to formally introduce

a probabilistic description of the occurrence times of

specific earthquakes. He treated earthquake recur-

rence as a renewal process, in which the times

between successive events (in this case, the large

earthquakes in a specific fault) are assumed to be

independent and independently distributed random

variables.
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Since then, several authors have proposed proba-

bilistic versions of the elastic-rebound model in the

shape of a plethora of probability distribution func-

tions (pdfs) for the duration of the earthquake cycle:

exponential (UTSU 1984; SORNETTE and KNOPOFF

1997; MATTHEWS et al. 2002), Weibull (UTSU 1984;

SORNETTE and KNOPOFF 1997; MATTHEWS et al. 2002;

FERRÁES 2003; GÓMEZ and PACHECO 2004; YAKOVLEV

et al. 2006; ABAIMOV et al. 2007, 2008; GOLTZ et al.

2009), log-normal (UTSU 1984; SORNETTE and KNOP-

OFF 1997; MATTHEWS et al. 2002; GÓMEZ and PACHECO

2004; FERRÁES 2005; ABAIMOV et al. 2007, 2008),

gamma (UTSU 1984; MATTHEWS et al. 2002; GÓMEZ

and PACHECO 2004; FERRÁES 2005), power-law (SOR-

NETTE and KNOPOFF 1997), Brownian passage time

(MATTHEWS et al. 2002; WGCEP 2003; MICHAEL

2005; YAKOVLEV et al. 2006; ABAIMOV et al. 2007;

ZÖLLER et al. 2008), among others. However, due to

the scarcity of registered large earthquakes in a spe-

cific fault (usually 4–10 earthquakes), the statistics

upon which the selection of a specific pdf is based are

poor. This means that different pdfs can fit the

empirical distribution function.

Most of the probability distributions have been

used solely for their statistical properties, with no

relationships with the physics of the underlying pro-

cess (elastic rebound theory). However, a subset of

them has a physical rationale and from this point of

view can be considered as better motivated. One

example is the Brownian passage time distribution

(BPT; MATTHEWS et al. 2002), where the seismic

cycle in a fault is modeled by the time evolution of

the so-called Brownian relaxation oscillator.

Also, the majority of the probability distributions

used in the context of earthquake recurrence are con-

tinuous. However, in the last 10 years, several discrete

probability distributions that are the outcome of cel-

lular automata models have been proposed (VÁZQUEZ-

PRADA et al. 2002; GONZÁLEZ et al. 2005; TEJEDOR et al.

2009). These discrete, cellular automata-based proba-

bility distributions share with the BPT distribution

their physical motivation, as the models behind these

discrete probability distributions try to reproduce in a

few cellular automata rules the physics of a seismic

fault under the elastic rebound assumption.

The aim of this paper is to present a discrete

probability distribution, the negative binomial

distribution (NBD) for the recurrence of large

earthquakes. The study of one-way Markov cycles

was presented in TEJEDOR et al. (2012), together with

two of its limits, the so-called box model and the

NBD. Here we focus on the NBD for its particular

importance: the NBD seems to be the unique dis-

tribution that derives from the dynamics of a

cellular automaton and simultaneously appears in

general textbooks in probability and statistics. In

Sect. 2, the NBD and its first moments are intro-

duced. Section 3 recalls that the NBD is a special

case of a waiting time distribution for a one-way

Markov cycle, as deduced in TEJEDOR et al. (2012);

Sect. 4 then uses this distribution as a renewal

model for large earthquakes, using the earthquake

series of the Parkfield segment of the San Andreas

Fault as an example. The quality of the fit of the

NBD to the empirical distribution function of the

Parkfield series is compared to other renewal models

used in the literature. Section 5 assesses the fore-

casting capabilities of the NBD by means of a

reference prediction strategy and error diagrams.

Finally, in Sect. 6, the most important conclusions

drawn from the paper are stated. The computation of

the asymptotic limit of the hazard rate for the NBD

is detailed in the Appendix.

2. The Negative Binomial Distribution

As there are some different modalities of defining

the NBD, we will now specify the form used in this

paper.

A negative binomial experiment is a statistical

experiment that has the following properties: The

experiment consists of n repeated trials. Each trial can

result in just two outcomes, a success or a failure. The

probability of success, denoted by 1 - a (a \ 1), is

the same on every trial. In consequence, the proba-

bility of failure is a. The trials are independent. And

the experiment continues until N successes are

observed. N is specified in advance.

The negative binomial random variable is the

number n of repeated trials to produce N successes in

a negative binomial experiment. The probability

distribution of the negative binomial random variable

is called an NBD. Its form is:

24 A. Tejedor et al. Pure Appl. Geophys.



PN;aðnÞ ¼ ð1� aÞNan�N n� 1

N � 1

� �
ð2Þ

The mean, variance, and coefficient of variation—

or aperiodicity—of this distribution are:

l ¼ N

1� a
; ð3Þ

r2 ¼ Na

ð1� aÞ2
; ð4Þ

and

a � r
l
¼

ffiffiffiffi
a

N

r
; ð5Þ

respectively.

3. The NBD as the Waiting Time Distribution

in an Specific Markov Cycle Model

Let us suppose a Markov chain with N sites

forming a closed loop that has gone over clockwise

(see Fig. 1 for illustration). The N sites are ordered by

the index i, i ¼ 0; 1; . . .;N � 1;N: As a genuine cel-

lular automaton, time increases in discrete steps. At

the beginning of each cycle, our system occupies the

first position, i = 0. In the first time step, it makes a

trial to pass to site i = 1. The probability of success is

(1 - a0) and that of failure is a0. Typically, after

some trials, the system will occupy site 1. Now all is

identical to the first case, except that the probability

of passing from site 1 to site 2 is (1 - a1). Then the

turn of sites is 2; 3; . . .;N � 1:

When site N is occupied, the cycle ends. The

system automatically passes to site 0 and a new cycle

starts. Figure 2 shows an example of this process of

slow filling and abrupt emptying for 11 consecutive

cycles for a system with N = 6 and (1 - ai) = 1/

N = 1/6, for all states i.

The traveling in successive discrete steps around

the cycle can be interpreted as a process of gradual

increase of strain in fault, and thus this Markov cycle

represents the seismic cycle in a fault. Site 0 represents

the state with no strain and site N represents the state of

maximum strain that is automatically released to pass

to site 0. This sudden release of strain simulates the

occurrence of a characteristic earthquake in the fault.

Thus, in this model, a decrease in the strain, such as

could take place in a random walk type model, is

forbidden. This model is illustrated in Fig. 1 and

materialized in the following Markov matrix:

½M� ¼

a0 1� a0 0 0 0 0

0 a1 1� a1 0 0 0

0 0 a2 1� a2 0 0

0 0 0 a3 1� a3 0

0 0 0 0 a4 1� a4

1� a5 0 0 0 0 a5

0
BBBBBBBB@

1
CCCCCCCCA

ð6Þ

Figure 1
Scheme of a one-way Markov cycle with N = 6. The probability of

staying in state i is ai and the probability of jumping from state i to

state i ? 1 is (1 - ai). Jumping from one state to the next means

that the fault has accumulated more strain energy. The wavy line

between states 6 and 0 indicates that at the end of the cycle, all the

stored energy is released

Figure 2
Occupation (number of occupied sites) of an N = 6 system as a

function of time for 11 consecutive cycles. Note the repetitive

pattern but the lack of perfect periodicity
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Note that the number of parameters in this dis-

crete model is N ? 1: the length of the cycle, N, plus

the value of the N parameters ai. Using standard

techniques of Markov chains (TEJEDOR et al. 2012),

one can obtain, in a closed form, the distribution

function of the cycle lengths in this model:

PNðnÞ ¼
YN�1

i¼0

ð1� aiÞ
XN�1

i¼0

an�1
iQN�1

jð6¼iÞ¼0 ðai � ajÞ

" #
;

n ¼ N;N þ 1; . . .;1
ð7Þ

It is clear that until time step n = N, the proba-

bility of completing a cycle is null. In seismology this

is called a stress-shadow.

A property of this general model is that no matter

what the value of its parameters are, the aperiodicity

is lower than 1.

When the N parameters ai are equal,

a ¼ a1 ¼ a2 ¼ � � � ¼ aN ð8Þ

Equation (7) becomes Eq. (2). That is, if Eq. (8) is

fulfilled, an NBD is the waiting time distribution of

the Markov cycle.

After this hypothesis, the pdf has only two

parameters, N and a. This bi-parametric freedom can

be used for fitting purposes, including, of course, the

seismic cycles. In this paper, however, we will step

forward with an additional simplification by relating

them in the form:

1� a ¼ 1

N
ð9Þ

After this new hypothesis, there is only one free

parameter and each cycle of the model can be intui-

tively associated with the ordered filling of a box

with N positions. The new simplified NBD is

PNðnÞ ¼
1

N

� �N
N � 1

N

� �n�N
n� 1

N � 1

� �
;

n ¼ N;N þ 1; . . .1
ð10Þ

In the next section, we will see that N = 6 is the

most appropriate size of the model to fit the recur-

rence of earthquakes in the Parkfield, California

section of the San Andreas Fault. For this case, the

pdf in Eq. (10) is simply:

P6ðnÞ ¼
1

6

� �6
5

6

� �n�6
n� 1

5

� �
; n ¼ 6; 7; . . .1

ð11Þ

The values of its mean ad aperiodicity are:

l6 ¼ 36 and a6 ¼ 0:373 ð12Þ

Figure 3 plots the NBD written in Eq. (11). To mark

the discrete nature of the probability distribution,

only points for integer time steps have been drawn,

with no line connecting them.

4. Applications of the NBD in Seismicity

and Earthquake Forecasting: the Parkfield

Series

Including the latest event, the Parkfield series

(BAKUN and LINDH 1985; BAKUN 1988; MICHAEL and

JONES 1998) consists of seven Mw & 6 mainshocks,

which occurred on 9 January 1857; 2 February 1881;

3 March 1901; 10 March 1922; 8 June 1934; 28 June

1966 and 28 September 2004. In consequence, the

duration (in years) of the six observed inter-event

times are: 24.07, 20.08, 21.02, 12.25, 32.05 and 38.25.

The mean value lPk, the sample standard deviation rPk

(the square root of the bias-corrected sample variance),

and the aperiodicity aPk of this six-data series are:

Figure 3
Probability density function of the NBD for the case N = 6, (1 -

a) = 1/6

26 A. Tejedor et al. Pure Appl. Geophys.



lPk ¼ 24:62 years; rPk ¼ 9:25 years;
aPk ¼ 0:3759

ð13Þ

Now, we will proceed to fit these data using the

simplified NBD written in Eq. (11). Its aperiodicity is

given by

aNBD ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
N � 1

N2

r
ð14Þ

As we want a distribution with the same aperiodicity

(and mean) as the Parkfield series, taking aPk from

Eq. (13) and substituting it in Eq. (14), we have

N = 5.8. But because N is a discrete quantity, we use

the nearest integer, N = 6.

However, for fitting the data, it is necessary to

assign a definite number of years to the non-dimen-

sional time step of the model. This second parameter

will be called s. From Eqs. (3) and (9), we have that

for the NBD, l = N2 = 36 time steps. This mean

cycle length (in non-dimensional time steps) should

be equal to the mean recurrence time of the Parkfield

series, lPk = 24.62 years, so that s = 0.68 years per

time step of the model. In Fig. 4, we have plotted the

empirical distribution function of the Parkfield series

(gray step-like line) and the fit to the cumulative

NBD with N = 6 (black continuous line), together

with five other (cumulative) distribution functions

used as renewal models in the literature: Weibull,

gamma, log-normal, BPT and minimalist model

(MM; VAZQUEZ-PRADA et al. 2002). It is quite obvious

from the figure that the performance of all six models

is good and very similar, including the NBD. Indeed,

the residuals for the NBD evaluated at the midpoints

of the horizontal segments of the empirical distribu-

tion function are the lowest of the six tested models.

The NBD (and any of the other models shown in

Fig. 4) can be used to estimate the time-dependent

probability of having an earthquake as a function of

the time elapsed since the last earthquake in the series

(28 September 2004). This estimation can be carried

out with the hazard rate function,

hN;aðnÞ ¼
PN;aðnÞP1
i¼n PN;aðiÞ

ð15Þ

For discrete distributions like the NBD, the hazard

rate is the probability for an earthquake to occur at

time step n on the condition that it has not occurred

until time step n - 1. However, in the seismological

literature, it is customary to express the likelihood

of a future earthquake using the yearly conditional

probability of earthquake occurrence, P(n|Dt =

1 year), instead of the hazard rate. This function

gives the probability of having an earthquake during

the next year, provided it has not occurred before:

PN;aðnjDt ¼ 1 yearÞ ¼ SN;aðnþ DtÞ � SN;aðnÞ
1� SN;aðn� 1Þ ð16Þ

where SN;aðnÞ ¼
Pn

n0¼N PN;aðn0Þ is the cumulative

distribution function. The yearly conditional proba-

bility function for the Parkfield series is illustrated in

Figure 4
Fit of the NBD model (black continuous line) to the Parkfield series

(gray step-like line) and comparison with other statistical models

used in the literature

Figure 5
Yearly conditional probability for the Parkfield series as predicted

by the negative binomial model compared to other statistical

models used in the literature
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Fig. 5. Again, as in Fig. 4, the NBD and five other

models are compared. The present yearly probability

of earthquake occurrence is 0.004, i.e., there is a

0.4 % probability of having an earthquake in the

following 12 months. Obviously this probability is

low because the earthquake cycle is in its early

stages. When the cycle is at its average duration,

24.62 years, the yearly probability of earthquake

occurrence will be 6 %.

Both the hazard rate and the yearly conditional

probability functions for the NBD reach a constant

value for large times. Inserting Eq. (2) into Eq. (15),

one obtains that, for long times,

lim
n!1

hN;aðnÞ ¼ 1� a ð17Þ

The derivation of this equation can be found in the

Appendix. If Eq. (9) is used instead (i.e., the one-

parameter simplification of the NBD), the asymptotic

limit of the hazard function is equal to 1/N.

5. Error Diagrams for the Parkfield Example

A hint of the predictability of the large relaxations

in this type of model is given by the aperiodicity of

their time series. The aperiodicity, as stated in Sect. 1,

is a quantitative measure of the lack of regularity of a

time series. As the aperiodicity of this model is

always \1, the occurrence of the large events is a

quasi-periodic phenomenon. A robust way to assess

the predictability of a time series is by trying to

forecast its events by declaring alarms at particular

times.

The aim is to declare alarms before all the events

in order not to miss any, but to declare them just

before each event in order to minimize the total alarm

time. Many strategies can be devised to declare the

alarms, but there is a reference strategy to which all

others can be compared (NEWMAN and TURCOTTE

1992; VÁZQUEZ-PRADA et al. 2002; KEILIS-BOROK and

SOLOVIEV 2003). This strategy consists of waiting a

fixed time after each event (waiting time w), then

setting the alarm, and maintaining it until the occur-

rence of the next event (Fig. 6). If the following event

in the time series occurs before the alarm is raised, it

is counted as a prediction error; if the following event

in the time series occurs after the alarm is raised, it is

counted as a prediction of success and the alarm is

then cancelled.

The events that are to be predicted (large earth-

quakes) are the vertical red bars numbered

correlatively. An alarm (vertical black lines with

rounded top) is set a fixed time interval after each

event (waiting time) and the prediction is labeled

error (E) or success (S), depending on whether the

alarm was off or on when the event occurred,

respectively. The fraction of errors is the number of

events not predicted (one in the example, the second

event) divided by the total number of events (five

events), i.e., fe = 0.2; and the fraction of alarm time

is the total alarm time (blue sections of the time line:

29 time units) divided by the total duration of the

time series (86 time units), i.e., fa = 0.34 in the

example shown in the figure.

The fraction of errors fe (number of missed events

divided by the total number of events) and the frac-

tion of alarm time fa (total alarm time divided by the

total duration of the time series) can be computed as a

function of the above mentioned waiting time w, and

the purpose is to find the optimum waiting time. This

optimum waiting time depends on the relative

importance that failing to predict an event has com-

pared to keeping the alarm on. An objective function,

called loss function, L,that incorporates this trade-off

in each particular case can be defined. Here, we will

use the simplest of them, L = fe ? fa, where failure

to predict an event and a longer alarm time are

equally penalized.

Thus, the aim is to find the waiting time w = w*

that minimizes L(w). This minimum value is denoted

by L* : L(w*). The best way to graphically display

this is by means of an error diagram, where the

fraction of alarm time fa runs along the horizontal

axis and the fraction of errors fe runs along the ver-

tical axis. Error diagrams were introduced in

earthquake forecasting by MOLCHAN (1997), who

contributed to the optimization of the earthquake

prediction strategies with rigorous mathematical

analysis.

A good strategy of forecasting must produce both

small fe and fa, because both the prediction failures

and the alarms are costly. A random guessing strategy

(randomly turning the alarm on and off) will yield

L = 1, a result which can be easily understood. The

28 A. Tejedor et al. Pure Appl. Geophys.



alarm will be on, randomly, during a certain fraction

of time, fa. Thus, there will be a probability equal to fa
for it being on when an earthquake eventually occurs

(and a probability of 1 - fa for it being off). The

result is that fe = 1 - fa. As a trivial special case, if

the alarm is always on (fa = 1), then all the earth-

quakes are ‘‘forecasted’’ (fe = 0). Conversely, all the

earthquakes are failures to predict if the alarm is

always off. The random guessing strategy is consid-

ered as a baseline, so a forecasting procedure makes

sense only if it gives fa ? fe \ 1.

Both functions, fa and fe, together with the loss

function L = fe ? fa are plotted in Fig. 7a for the

case N = 6, while Fig. 7b plots the error diagram for

the same data. For each value of N, L(w) has a

minimum at a specific value of w, w*(N). As can be

seen in Fig. 7, w*(6) = 22, for which

faðw�Þ ¼ 0:403; feðw�Þ ¼ 0:147; Lðw�Þ ¼ 0:550

ð18Þ

For the Parkfield sequence, w* corresponds to

sw� ¼ 15:0 years

If the distribution derived from the NBD model

correctly describes the recurrence of large earth-

quakes at Parkfield, an alarm connected 15 years

after the last earthquake (beginning of the cycle) and

disconnected just after the occurrence of each shock

would yield the results given in Eq. (18). Note that

this time is approximately equal to the difference

between the mean and the standard deviation. This is

reasonable because w* = 15 years would capture

most of the probability curve, as can be seen in

Fig. 3.

Figure 6
Reference strategy for the assessment of the predictability of a time series. Red bars are the earthquakes to be forecasted (five in the example).

An S (success) above a red bar means that the earthquake has been successfully predicted, whereas an E (error) means that the earthquake has

not been predicted. The blue strips stand for the time with the alarm on before each earthquake

Figure 7
a Fraction of error fe, fraction of alarm, fa and loss function L as a function of the time after the last earthquake for a NBD model with N = 6.

b Error diagram for the prediction strategy shown in a. The minimum value of the loss function is L* = 0.55 for w* = 22
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6. Conclusions

We have introduced the NBD as a renewal model

to describe the recurrence of large earthquakes in

faults.

As a test ground of application, we have used the

Parkfield series. The yearly conditional probability

and other functions as predicted by the NBD are

compared to other statistical models used in the lit-

erature, and a simple forecasting strategy has been

evaluated using error diagrams.

Our results show that the NBD is competitive

against other models, but general conclusions cannot

be drawn because of the smallness of the sample.

The NBD seems to be the unique discrete distri-

bution coming from a cellular automaton whose

properties can be found in textbooks of probability

and statistics.

In this paper, we have reduced one parameter of

the distribution by relating the probability of

advancing in the Markov process to the total number

of steps in the cyclic chain. With this simplification,

this model can be intuitively understood as the pro-

gressive ordered filling of a finite box.

Appendix: Asymptotic Behavior of the Hazard Rate

Function

Recall that the N-step Markov-cycle distribution,

Eq. (7), collapses to a NBD when all transition

probabilities are equal, a ¼ a1 ¼ a2 ¼ � � � ¼ aN :

PN;aðnÞ ¼ ð1� aÞNan�N n� 1

N � 1

� �

¼ 1� a

a

� �N

an ðn� 1Þ. . .ðn� N þ 1Þ
ðN � 1Þ! :

ð19Þ

Using the definition of hazard rate for a discrete

distribution, Eq. (15) we can write

hN;aðnÞ ¼
PN;aðnÞP1
i¼n PN;aðiÞ

¼ anðn� 1Þ. . .ðn� N þ 1ÞP1
i¼n aiði� 1Þ. . .ði� N þ 1Þ

¼ 1P1
i¼1 ai�n i�1

n�1
. . . i�Nþ1

n�Nþ1

: ð20Þ

To proceed further, we make the following change of

variable:

i� n ¼ m: ð21Þ

With this change of variable, the hazard rate of the

general, two-parameter NBD, Eq. (20), can be written

as

h�1
N;a ¼

X1
m¼0

am 1þ m

n� 1

� �
. . . 1þ m

n� N þ 1

� �
:

ð22Þ

In the long-time limit, i.e., when n tends to infinity,

we have

lim
n!1

h�1
N;a ¼

X1
m¼0

am 1� 1� 1� � � � � 1ð Þ

¼
X1
m¼0

am ¼ 1

1� a
:

ð23Þ

So, in the general, two-parameter NBD the asymp-

totic limit of the hazard rate is:

lim
n!1

hN;a ¼ 1� a: ð24Þ
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